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Abstract

Many routine daily activities—such as cooking and commuting—cause large recur-
ring pollution spikes that may impact health without significantly affecting average
exposure. We study pollution spikes by combining experimental variation in cooking
technology with high-frequency data on individual pollution exposure and time-use in
Kenya. Improved cookstoves reduce PM2.5 spikes while cooking by 51.3ug/m? (41%)
and cause a 0.24 standard deviation reduction in self-reported respiratory symptoms.
However, even after more than three years of daily use, we find no clinical health im-
provements, possibly because we detect no impact on average exposure. Clinical health
improvements may require reductions in ambient concentrations.
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1 Introduction

Air pollution is responsible for 7-9 million premature deaths annually (10-15% of all deaths),
making it “the single biggest environmental threat to human health” (Global Burden of Dis-
ease, 2017; WHO, 2021). Specifically, research has shown that high average concentrations
harm long-run clinical health and mortality.! However, many routine economic activities
cause large but only brief spikes in exposure: two individuals with identical average ex-
posure may experience very different within-day exposure (Figure 1 provides an example).
What are the health impacts of repeated spikes in air pollution, often experienced on a daily
basis, for years on end? Regulatory agencies and policy-makers alike are debating this ques-
tion, for example in the contexts of cooking and transportation, two ubiquitous sources of
daily pollution spikes (EPA, 2023; WHO, 2021).

The dearth of evidence on this topic results in part from the lack of high-frequency data
on how individual-level behavior generates pollution spikes, and on how severely individuals
are exposed to these spikes. This is difficult to observe because economic activity, human
behavior, and demographic structures can all cause an individual’s realized exposure to differ
substantially from data captured through regulatory or other stationary monitoring. Study-
ing the topic also requires a plausibly random reduction in pollution spikes, that persists
daily, for multiple years in a row.

We generate causal evidence on this subject in the context of cooking. More than 90%
of pollution-related deaths occur in low- and middle-income countries (WHO, 2021), where
more than four billion people still cook without modern cooking technologies (World Bank,
2020). The World Health Organization estimates that this causes 3.2 million premature
deaths per year (2023).

We offer 1,000 charcoal cookstove users in Nairobi—who on average cook for around
two hours per day—randomized subsidies and access to credit for an improved stove that
uses 39% less charcoal. We follow up with study participants after 3.5 years of daily use:
83% of respondents who adopted an improved stove at baseline still own one at endline,
and 90% of those who did not adopt one still do not own one. To characterize impacts on
the distribution of individuals’ realized pollution exposure, respondents carry a backpack
containing high-frequency pollution monitoring devices for 48 hours. A complementary time
use survey records each respondent’s activities—and whether they were indoors—during
each of those 48 hours. Informed by the pathophysiologic pathways linking pollution to

cardiopulmonary disease, clinical health outcomes include blood pressure, pulse oxygen, and

!Greenstone and Hanna (2014), Schlenker and Walker (2015), Chang et al. (2016), Isen, Rossin-Slater,
and Walker (2017), Hansman, Hjort, and Leon (2018), Deryugina et al. (2019), Wen and Burke (2022), Clay,
Lewis, and Severnini (2022), and Deryugina and Reif (2023).



self-reported respiratory and other diagnoses (Seaton et al., 1995; Pope III, 2000). We also
collect detailed self-reports on health symptoms for adults and children.

Our first finding is that the improved stove reduces pollution spikes during cooking hours
by 41%. For the control group, the average cooking spike (which we measure as the 99 per-
centile of 10-minute measurements during cooking hours) increases pollution by 125 pg/m?
relative to daily median exposure of 25 pg/m?. Improved stoves reduce this by 51.3 pg/m3.

We estimate that improved stove adoption causes a statistically significant 0.24 standard
deviation reduction in an index of self-reported respiratory symptoms such as headache and
cough. Several robustness checks provide evidence that experimenter demand is unlikely to
explain this, at least not entirely. While subject to the common limitations of self-reported
data, this result suggests the stoves may cause real health improvements.

However, we see no impacts on clinical health outcomes such as blood pressure, blood
oxygen, and medical diagnoses (including pneumonia). Even after 3.5 years of significant
reductions in daily pollution spikes, the 95% confidence intervals exclude a 0.18 SD or greater
reduction in health diagnoses and a 6 mm Hg or greater reduction in systolic blood pressure
(SBP). For comparison, smoking a single cigarette increases SBP by 20 mm Hg for around
15 minutes (Cohen and Townsend, 2009). Combining our estimates with evidence from
the medical literature, we can reject a 12% or greater decrease in major cardiovascular
events. Robustness checks indicate that the lack of clinical health impacts is not driven by
measurement error or statistical noise: for example, we find a strong correlation between
blood pressure and self-reported medical diagnoses.

These results can be reconciled by looking at how the intervention changed the distri-
bution of pollution. While there was a significant decrease in spikes while cooking, study
participants only cook for two hours per day on average (9% of the time). Thus, the 34%
reduction in mean pollution exposure during cooking hours translates to an approximately
2.1% reduction in overall average pollution, which we cannot statistically distinguish from
zZero.

Taken together, the evidence is consistent with pollution spikes driving short-term res-
piratory symptoms and clinical health being driven by average exposure. This would imply
that individuals have limited means to improve their own health by adopting improved
stoves: two-thirds of respondents experience daily average pollution between 20-49 pg/m?
(AQI 70-135), and we cannot reject the null that cookstove adoption does not change this.
We present descriptive evidence supporting this interpretation: for example, self-reported
symptoms correlate with pollution spikes but not with average concentrations. Participants’

beliefs about the stove’s potential health benefits are also consistent with this interpretation.

2>55 pg/m? (150 AQI) is ‘unhealthy’; >150 pg/m?3 (200 AQI) is ‘very unhealthy’ (EPA, 2018).



At baseline, 37% of respondents believed that adoption of the improved stove would have
no impact on their health, and 34% believed it would have a small impact. These beliefs
were not correlated with baseline willingness-to-pay—unlike beliefs about financial savings—
suggesting health improvements were not a key feature of the stove. While clinical health
benefits could emerge over a longer time horizon, they may require a reduction in average
pollution exposure, for example by regulating ambient pollution levels. Improved stoves may
improve health more in rural areas, or less in cities with even higher ambient air pollution.?

This research advances the literature in several ways. First, it contributes to extensive
research associating a wide range of health problems with energy-intensive cookstove usage
(WHO, 2021; Lancet, 2017). However, the evidence is far from conclusive. Most papers
are correlational rather than causal, and randomized trials often study adoption rather than
on the health impacts of improved cookstoves.* A recent Lancet meta-analysis identified
437 studies on the health impacts of cookstoves: only six were randomized trials (Lee et
al., 2020). The article identified an “urgent need for clinical trials evaluating cleaner fuel
interventions on health outcomes to underpin evidence-based policy and decision making.”
Table B1 provides an overview of the causal evidence on health impacts, which often lacks
quantitative measures of pollution or health. The large RESPIRE and HAPIN trials make
valuable advancements to this literature (Smith et al., 2011; Clasen et al., 2022), as do
several non-experimental papers that causally evaluate health impacts using the standard
econometric toolkit (Verma and Imelda, 2022). However, just like much of the existing
literature, these trials took place in rural communities, where ambient pollution is on average
much lower than in urban areas. In a 2018 review of the cookstove literature, Thakur et al.
(2018) identified no urban papers.® There is almost no evidence evaluating cooking exposure
in contexts with high ambient pollution, even though the one billion urban poor who live in
slums are chronically exposed to both: 80% of urban African residents use biomass as their
primary cooking energy (FAO, 2017). Our findings furthermore depart from some earlier
research asserting own-household generated air pollution plays a dominant role in aggregate
pollution exposure (WHO, 2014; Fisher et al., 2021).

Second, much existing research on the health impacts of air pollution evaluates changes in

3PM2.5 averages 13 ug/m? in Rome, 30 pug/m? in Accra, and 99 pg/m? in Delhi (IQAir, 2019).

4See Chowdhury et al. (2019), Pattanayak et al. (2019), Mobarak et al. (2012), Miller and Mobarak
(2013), Levine et al. (2018), Bensch and Peters (2019), Bensch, Grimm, and Peters (2015), Burwen and
Levine (2012), and Bensch and Peters (2019).

®More recently, Alexander et al. (2018) measured spikes and duration of exposure to estimate the pollution
and health impacts of improved stove adoption in an urban setting, but their sample is restricted to pregnant
women, they do not separately measure ambient pollution, and they examine relatively modest variation in
air pollution (a 5-13% reduction in PM2.5 spikes, and no impact on the mean). For the interested reader,
Table B1 provides an overview of the causal evidence.



mean daily concentrations collected by stationary monitors. However, recent debates have
heightened concerns about additional moments of the air pollution distribution, for example
in relation to induction stoves (The Guardian, 2023) and wildfire smoke (Scientific Amer-
ican, 2024). The impacts of repeated transient spikes could differ substantially from daily
averages and one-off spikes because of the non-linearity in health impacts that many papers
find. However, these moments are difficult to observe because individual exposure can differ
substantially from concentrations measured by stationary monitors: Pitt, Rosenzweig, and
Hassan (2010) for example discuss how family structure affects cooking pollution exposure.
Papers studying the impacts of sub-24 hour pollution shocks and other higher frequency mo-
ments of the pollution distribution tend to study one-off shocks rather than repeated daily
spikes.” Much of this literature furthermore studies high-income countries: papers that do
evaluate the health impact of ambient air pollution in low- and middle-income countries
(LMICs) rarely evaluate personal exposure.® We collect individual exposure measurements
of PM2.5 and CO on a minute-by-minute basis for 48 hours, which we map to hourly time
use data, allows us to generate individual distributions of pollution exposure. Doing so in a
high-stakes, non-laboratory setting allows us to understand how routine economic activities
and human behavior drive realized pollution exposure. We combine this with experimental
variation that reduces a key source of daily pollution spikes persistently for 3.5 years, and
collect clinical and self-reported health outcomes to causally estimate the long-term impact
of these reductions.

Finally, the dearth of research on recurrent spikes in exposure impedes the optimal design
of costly environmental regulations. Most countries—as well as the WHO-—only regulate
PM2.5 using annual and 24-hour averages or extremes (Nazarenko, Pal, and Ariya (2021) in
WHO Bulletin). While the U.S. EPA does regulate spikes of other pollutants such as ozone
and carbon monoxide, the regulation of daily PM2.5 spikes is subject to ongoing debate.
The U.S. Environmental Protection Agency’s recent review of the National Ambient Air
Quality Standards notes that much research on the impacts of short-term spikes evaluates

the immediate impacts of a single spike, rather repeated daily exposure (EPA, 2023).

6See footnote 1. Papers that study non-linearity in the dose-response function often study concavity in
daily averages (He, Fan, and Zhou, 2016; La Nauze and Severnini, 2025; Gong et al., 2023; Miller, Molitor,
and Zou, 2024). Those that study how regulations and firm actions affect pollution spikes (also known
as ‘episodic pollution’) often do not measure subsequent health outcomes (Henderson, 1996; Caplan and
Acharya, 2019; Cropper et al., 2014; Cutter and Neidell, 2009).

"In the economics literature, see Adhvaryu, Kala, and Nyshadham (2022), Kiinn, Palacios, and Pestel
(2023), Ebenstein, Lavy, and Roth (2016), and Archsmith, Heyes, and Saberian (2018). Experimental papers
on the health impacts of short-term pollution spikes include, for example, Kubesch et al. (2015), Soppa et al.
(2014), Kocot et al. (2020), Fedak et al. (2019), and Shehab and Pope (2019).

8See Adhvaryu, Kala, and Nyshadham (2022), Ebenstein et al. (2017), Gupta and Spears (2017), Green-
stone and Hanna (2014), Adhvaryu et al. (2023), and Barrows, Garg, and Jha (2019).



2 Air pollution and health

Particulate matter (PM) is generally defined by size rather than by chemical make-up: PM2.5
refers to any particulate smaller than 2.5 um in diameter. The chemical content of PM varies
across locations, hour of day, and day of year. In Nairobi, PM consists primarily of organic
carbon, dust, and sea salt (Figure Al). Charcoal burning can contribute to both organic
carbon and black carbon, as can the burning of most types of fossil fuel (diesel, petrol, and
coal) and forest products.

Pope et al. (2018) document average roadside PM2.5 levels in Nairobi, Kenya of 37 ug/m?
and average urban background levels of 25 pg/m3. This is roughly in the middle tercile of
global urban pollution distributions: PM2.5 concentrations average 13 j1g/m? in Los Angeles
and Rome and 30 pg/m? in Kampala and Accra, but 49 pg/m? in Jakarta and 99 pg/m? in
Delhi (IQAir, 2019). Figure 1 displays daily PM2.5 patterns collected in Nairobi, Kenya by

two study participants.

Figure 1: PM2.5 exposure for two study participants, both with average exposure of 21
pg/m?
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Ten minute averages (of 2-minute frequency measurements) collected by two study participants, both
residing in Nairobi, Kenya, carrying Purple Air II Air Quality Sensors over 48 hours. Both have average
daily PM2.5 exposure of 21 ug/m3. The black horizontal line marks 35 pug/m?3, the WHO'’s least stringent
interim target. The green, blue, yellow, orange, and red bars indicate the World Health Organization’s
recommended air pollution targets, ranging from <5 pg/m3 to 25-35 ug/m?, its most to least stringent
recommended targets, respectively (WHO, 2021). Figure A2 presents two similar examples for carbon
monoxide. Section 3.3 provides more detail on data collection.



2.1 Transient spikes in air pollution

Diurnal patterns in air pollution spikes have been documented in the U.S. (Chavez and Li,
2020), the U.K. (Visser et al., 2015), India (Chen et al., 2020; Kumar et al., 2020), China
(Bai et al., 2020), and across several African countries (Anand et al., 2024). Spikes usually
occur in the morning and evening, caused for example by cooking or traffic. Most domestic
governments—as well as the WHO—only provide PM2.5 standards for annual and 24-hour
average concentrations.” Whether to regulate spikes is subject to ongoing policy debate, for
example in the recent U.S. Environmental Protection Agency evaluation of the National Am-
bient Air Quality Standards (NAAQS) for Particulate Matter (EPA, 2023). A recent WHO
Bulletin states, “The current 24-hour standards mask sharp PM2.5 concentration spikes over
short periods of minutes to hours. Jurisdictions with a high temporal variability of PM2.5
concentration, such as in India and China, should consider short-term averaging (such as
over 20 minutes or 1 hour)” (Nazarenko, Pal, and Ariya, 2021).

In many low- and middle-income countries (LMICs), indoor cooking is a key source of
transient air pollution spikes (Johnson et al., 2022). More than four billion people still do
not have access to clean cooking technologies (WB, 2020), causing millions of deaths each
year (WHO, 2017; Pattanayak et al., 2019; Bailis et al., 2015). This includes many who
live in cities: 80% of households living in African cities still primarily use biomass (wood
or charcoal) for cooking, and three billion people are expected to live in slums in Africa
and Asia by 2050 (FAO, 2017, WHO, 2021; UN, 2022). As a result, urban LMIC residents
suffer disproportionately from both high average pollution concentrations and even higher

transient spikes.

2.2 Cookstoves in Kenya

Two-thirds of Kenyan households rely on biomass as their primary cooking fuel (KNBS,
2019; WB, 2019). Around 42% of Kenyan households use a Kenyan Ceramic Jiko (KCJ,
or just jiko) for daily cooking, with the primary alternatives being wood stoves (in rural
areas) and liquefied petroleum gas (LPG) and kerosene stoves (in urban areas) (Ministry
of Energy, 2019). According to the World Bank’s Kenya Country Environmental Analysis
(2019), “Those who cook inside with poor ventilation have 400-600 ug/m? average annual
concentration of PM2.5 in their household.” These levels are extremely high, even compared
with the WHO’s least stringent air pollution target of <35 jg/m3, let alone its most stringent
target of <5 pg/m3 (WHO, 2021).

Figure 2 displays a jiko as well as the Jikokoa, an energy efficient charcoal stove produced

9Russia limits 20-minute PM2.5 averages, making it the only country that regulates a shorter interval.



by Burn Manufacturing (‘Burn’), which has sold more than four million energy efficient cook-
stoves since 2014. Berkouwer and Dean (2022a) provide more detail on charcoal consumption,

barriers to adoption, and access to credit among potential adopters in Nairobi.

Figure 2: Traditional jiko (‘stove’) and energy efficient stove

Reproduced from Berkouwer and Dean (2022a). On the left is the traditional jiko. On the right is the
energy efficient stove. The two stoves use the same type of charcoal and the same process for cooking food,
hence the energy efficient stove requires essentially no learning to adopt. After usage, the user disposes of
the ash using the tray at the bottom. The central chamber of the energy efficient stove is constructed using
insulating materials.

The primary difference between the two stoves is that the Jikokoa’s main charcoal com-
bustion chamber is constructed using improved insulation material and designed for opti-
mized fuel-air mixing (Berkouwer and Dean, 2022a). Designed and tested by laboratories
in Nairobi and Berkeley, the Jikokoa is made of a metal alloy that better withstands heat,
and a layer of ceramic wool insulates the chamber to cut heat loss. Parts are made to strict
specifications, and components fit tightly to minimize air leakage. Adoption of the energy
efficient stove does not require any behavioral adaptation or learning as the cooking processes
are identical. In line with lab estimates, Berkouwer and Dean (2022a) find that adoption
of the Jikokoa reduces charcoal usage (as measured through charcoal expenditures and ash
generation) by 39%. Most adopters continue cooking the same types and quantities of food

as before, using the same type of charcoal.

2.3 Existing health measurement methodologies

An extensive public health literature informed the selection of health-related outcome vari-
ables. According to the World Health Organization, the two largest health impacts from
household air pollution caused by cooking are ischaemic heart disease and stroke, which we
proxy for with blood pressure measurements (WHO, 2023). Kubesch et al. (2015), Chang
et al. (2015), and Soppa et al. (2014) document an association between air pollution and

blood pressure within 1-2 hours of high pollution exposure. The Guatemala RESPIRE trial



found impacts on blood pressure (McCracken et al., 2007), and more recently an experiment
in urban Nigeria found that an improved stove can reduce blood pressure among pregnant
women (Alexander et al., 2018). Recent RCTs in rural Malawi and rural Guatemala found
that improved stove adoption can reduce pneumonia in adults as well as in children (Mor-
timer et al., 2016; Smith-Sivertsen et al., 2009). For children aged 5 and under, who are
more likely than older children to spend more of their days with the primary cookstove user,
frequent exposure to cooking-associated pollution may have negative health impacts, and for
this reason our surveys include questions regarding adult and child health.

In settings where the technology to formally diagnose pneumonia is unavailable, the liter-
ature recommends three methodologies to diagnose pneumonia. The first is to inquire about
diagnoses made by health professionals. The second is to ask about symptoms related to
respiratory distress in order to make an attempted diagnoses of an acute respiratory infection
(ARI), which can then be cautiously interpreted as a presumed pneumonia diagnoses. This
methodology is standard for, among others, the World Health Organization, the USAID De-
mographic and Health Survey (DHS) program, and UNICEF.!° Finally, oximetry readings
have been found to be a cost-effective approach to screening for respiratory infections (Floyd
et al., 2015; Van Son and Eti, 2021; National Library of Medicine, 2021).

One challenge when trying to identify the health impacts of improved stoves is that
adopters may not use the improved stove consistently (e.g. Hanna, Duflo, and Greenstone,
2016; Beltramo and Levine, 2013). Berkouwer and Dean (2022a) rule this out in this paper’s

study context.

3 Study design and methodology

The study consists of three surveys conducted in 2019, a medium-term follow-up conducted
in 2020, and a long-term follow-up conducted in 2022-2023. Figure 3 presents an overview.

In the baseline enrollment survey conducted April-May 2019 (visit 1), enumerators en-
rolled respondents residing in urban settlement areas around Nairobi, Kenya who used a
traditional charcoal stove as their primary daily cooking technology, who were the primary
cookstove user in their household, and who spent at least $3 per week buying charcoal.
In terms of housing quality and type, and ventilation between indoor and outdoor air, re-
spondents’ housing characteristics are similar to those of many other densely populated
neighborhoods in large cities in low- and middle-income countries.

To elicit baseline levels of health, enumerators asked respondents whether they had expe-

0For example, UNICEF MICS6 (2020) identifies ARI if a child had fast, short, rapid breaths or difficulty
breathing in combination with chest problems.



Figure 3: Timeline of field activities
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Participants who adopted the stove did so during the main visit (¢ = 0). For 89% of respondents the long-
term endline was conducted 3.4-3.7 years after the main visit. Child anthropometrics were collected on
either drop-off or pickup depending on presence. Due to health restrictions, the 2020 survey was conducted
by phone.

rienced a persistent cough or breathlessness in the past week. If they had any children under
16 who lived with them, we asked the same about the child(ren). Enumerators then elicited
beliefs about the potential health impacts of an improved stove using methodologies from the
health literature (Usmani, Steele, and Jeuland, 2017; Hooper et al., 2018). Specifically, in
an unprompted manner they asked respondents what they perceived to be the main benefits
of the improved stove—62% stated ‘reduced smoke’ (95% said ‘saving money’). They then
asked several Likert-scale questions about the extent to which the respondent thought usage
of a traditional stove has had negative impacts on their health, and how much adoption of
the improved stove might improve their health.

During the main visit (visit 2)—which took place approximately one month after each
respondent’s baseline visit and was completed by 955 respondents—each respondent was
given an opportunity to buy the stove at a subsidized price (Section 3.1 discusses the subsidy
randomization in more detail). Of the 955 respondents who completed the main visit, 570
(60%) adopted the improved stove.

In June—July 2019, approximately one month after the main visit, enumerators conducted
a short-term follow-up survey (visit 3). In 2020, approximately 16 months after the main

I Both follow-up surveys

visit, enumerators conducted a medium-term follow-up survey.!
included socio-economic questions as well as the same health symptoms questions asked
during the baseline surveys.

In 2022-2023 enumerators conducted a long-term endline survey round, which consisted

of two surveys, the second approximately 48 hours after the first. Enumerators were in-

"Due to COVID-19, all surveys conducted in 2020 were conducted over the phone.
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structed to only conduct the long-term endline survey if they were able to find the same
individual who had completed. The surveys were designed to take rigorous quantitative
measurements of air pollution exposure and physical health. An accompanying socioeco-
nomic survey included questions on charcoal expenditures, cooking technology ownership
and usage, maintenance, food cooked, home heating, in-network Jikokoa purchases, savings,
income, and work activities. Enumerators were able to reach 779 and successfully surveyed
702 (74%) of the 943 respondents they attempted to reach. Recent demolitions of informal
settlements in Nairobi contributed to imperfect follow-up (The Star, 2023), but attrition is
balanced by treatment assignment, take-up, and baseline health (Section 4.7 provides more
analysis on attrition). Of the 702 respondents, 639 still lived in or near the original study
areas, 53 had moved to rural areas, and 10 had moved elsewhere in Nairobi. 95% of respon-
dents were surveyed between 3.4-3.7 years after the main visit. Table 1 presents summary

statistics collected during the endline survey.

3.1 Causal identification

The Jikokoa cost $40 in stores at the time. Each respondent was randomly assigned a subsidy
between $10-39, stratified on baseline charcoal usage (Figure A3 shows the distribution
of prices). The subsidy treatment was cross-randomized with a random credit treatment
allowing recipients to pay for the stove in installments over a 3-month period, as well as an
attention treatment designed to increase the salience of long-term charcoal savings.

During the main visit, enumerators used a Becker, Degroot, and Marschak (1964) mech-
anism (BDM) to elicit WTP for the improved stove. After first identifying their maximum
WTP through a binary search, respondents then opened an envelope containing their ran-
domly assigned price. Respondents whose WTP was at least as high as their assigned price
(the market price of $40 minus the randomly assigned subsidy) then adopted the stove.!?

The credit treatment doubled WTP, while the attention treatment had no effect on WTP
(Figure A4). Among those in both the high subsidy and the credit treatment group, 93%
adopted the improved stove, whereas among those in both the low subsidy and the credit
control group only 8% did.

To estimate the causal effect of improved stove adoption on long-term outcomes, we use
the randomly assigned subsidy, the credit treatment assignment, and their interaction as
instruments for adoption. We report weak instrument F-statistics where relevant, but the

first stage is generally strong.

1298.6% of respondents for whom this was the case actually adopted the stove.
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Table 1: Summary statistics from respondent surveys

N Mean SD 25" 50 75

Female respondent 702 0.96
Completed primary education 702 0.70
Completed secondary education 702 0.26
Age 702 41.46 11.8 33.0 40.0 48.0
Number of children under 5 in home 702 0.50 0.7 0.0 0.0 1.0
Daily earnings (USD) 563 2.77 58 1.0 1.7 3.1
Daily charcoal expenditure (USD) 702 048 06 0.2 0.3 0.6
Minutes spent cooking per day 702 12754 59.5 90.0 120.0 150.0

.. of which indoor 702 111.80 61.3 70.0 109.0 150.0
Owns Jikokoa 702 0.52
Owns traditional wood or charcoal jiko 702 0.57
Owns LPG stove 702 0.59
Owns electric stove 702 0.01
Mostly uses modern stove 702 0.53
Blood oxygen 696 96.74 24 96.0 97.0 98.0
Average systolic blood pressure 696 123.46 22.0 108.3 118.5 131.7
Average diastolic blood pressure 696 81.75 129 73.0 79.3 89.0
Number of health symptoms 702 247 2.6 0.0 2.0 4.0
In the past month, fraction experiencing...

Fever 702 0.22

Headache 702 0.48

Persistent cough 702 0.23

Runny nose 702 0.22

Sore throat 702 0.15

Always feeling tired 702 0.28

Standard deviation and 25", 50t", 75" reported for all non-binary variables. Blood pressure is averaged
over three readings taken consecutively.

3.2 Time use and behavior

To match high-frequency pollution data to specific activities such as cooking or commuting,
the second endline survey included a time use module asking which activity or activities
the respondent was engaged in for each hour between the two surveys, whether they were
primarily indoors or outdoors during each hour, and—if they were cooking—which stove(s)
they were using. Most respondents cook primarily between the morning hours of 5-8am and
the evening hours of 6-9pm. There are modest differences in the types of technologies used
during different types of day, with LPG used slightly more in the mornings and charcoal
stoves used more in the evenings (Figure A5). Anecdotally, this appears to be due to a

preference for a fast-lighting stove (such as the LPG stove) in the morning, for a small meal
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or hot beverage, and a longer-cooking stove when preparing larger meals.

Respondents are indoors on average 89% of hours spent cooking, but there is some het-
erogeneity correlated with stove usage. For the 280 respondents who report using an LPG
or electric stove at least once in the time use survey, on average only 5% of hours spent
cooking with such a stove are spent outdoors. Conversely, for the nearly 500 respondents
who report using a wood or charcoal stove at least once in the time use survey, more than
20% of hours spent cooking with such a stove are spent outdoors. Respondents may be
choosing to cook indoors when using a relatively cleaner stove, which would limit the re-
duction in pollution exposure caused by the improved stove, as emissions are more likely to
build up indoors. All of our results on the impact of improved cookstove adoption should be
interpreted as factoring in any accompanying behavior changes such as location choice, or
opening doors or windows in order to increase ventilation, which have been shown to matter
(Lenz et al., 2023). That said, we do not detect an impact of improved cookstove adoption

on the propensity to cook or to cook indoors (Table B2).

3.3 Measuring air pollution exposure concentrations

We use two devices to measure air pollution. A Purple Air IT Air Quality Sensor (PA-II)
takes one measurement of Particulate Matter (PM) every two minutes,'® and a Lascar EL-
USB-CO Data Logger takes one measurement of Carbon Monoxide (CO) per minute.'* A
test of co-located readings shows that devices are strongly correlated and that there is a
small and generally stable gap between some devices (Figure A7). For this reason we include
device fixed effects in all regressions.!’

Air pollution exposure varies considerably not only by cookstove usage but by user be-
havior (Pitt, Rosenzweig, and Hassan (2010), for example, discuss how household structures
affect exposure). Following best practices from the public health and air pollution monitor-
ing literature (Johnson et al., 2022; Gordon et al., 2014; Gould et al., 2022; Chillrud et al.,
2021; Burrowes et al., 2020), and using procedures developed by the Berkeley Air Monitoring
Group (Johnson et al., 2021; Johnson et al., 2024), we therefore collect personal exposure
as experienced by respondents rather than conducting stationary monitoring of kitchen con-

centrations. During the first follow-up survey we provided each respondent with a small

13We average the PA-II a and b readings, and top-code data at 419 pug/m? above which the device saturates.
We apply the PA-II calibration methodology from Ward et al. (2021) and Giordano et al. (2021) to correct
for humidity and local air composition. Building on Tryner et al. (2020), if the difference between the a and
b readings is at least 25% and at least 15 ug/m? the reading is removed from the sample (1.7% of readings).

4Each CO device has an independent calibration factor. Devices were re-calibrated every two months,
between survey breaks. We include device FE in all regressions.

Interacting device fixed effects with a linear time trends could account for heterogeneous trends across
devices. This increases standard errors but does not qualitatively change the results.
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Figure 4: Average air pollution (PM 2.5) for participants by their home locations
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Distribution of respondents across Nairobi. Colors correspond to average particulate matter (PM 2.5)
exposure. Respondents for whom pollution was not recorded are shown in gray. The WHO air quality
guideline is 5 pug/m? (WHO, 2021). WHO interim targets 1 through 4 correspond to 10, 15, 25, and 35
ug/m?3. 63 survey respondents reside outside the depicted area.

mesh backpack containing the two devices (Figure A6). Respondents were asked to wear
this backpack continuously whenever feasible, or to keep it within one meter, at waist level,
when wearing it was infeasible. During the second follow-up survey 48 hours later the enu-
merators picked up the devices, downloaded the data, recharged the 48-hour battery pack,
and placed them in a new backpack to be deployed with a different respondent.’® Collecting
pollution exposure over a 48-hour period captures pollution generated by the respondent as
well as ambient pollution generated by industrial facilities, traffic, or other sources in urban
Nairobi. Figure 4 displays respondents’ average air pollution exposure over the 48 hours, by
their residential location. For most respondents, average PM2.5 is well above the WHO's air
quality limits.

Enumerators did not observe significant hesitancy from participants about wearing the
backpacks. The backpacks were designed to not be cumbersome to participants, weighing
only 2.2 1bs, and previous validation research in the same context found high levels of compli-
ance (Johnson et al., 2021). Based on the advice of the Berkeley Air Team, we also allowed
participants to take the backpack off while they were stationary as long as it remained within
1 meter of their location. Of the 44 respondents for whom air pollution data are missing, 36
had stated in advance that they only had time to complete one survey and as a result were
never asked to receive the devices.!” We did not quantitatively monitor backpack wearing,

as this would have required installing GPS trackers on the backpacks which we felt could be

1685% of respondents held the device between 45-50 hours.
1"The remaining eight all agreed to receive the backpack, but the data were unusable for technical reasons.
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Figure 5: Particulate matter (PM2.5, in pg/m?) pollution by improved stove ownership

A) Hourly averages over the day B) Distributions of 50th and 99th percentiles of
10-minute averages (by respondent)
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Panel A shows average PM2.5 air pollution, by hour and endline improved stove ownership, as collected
by respondents wearing backpacks for on average 48 hours. Figure A8 presents the same for PM1.0 and CO.

perceived as violating participants’ privacy and increase attrition, but enumerators reported
generally high backpack wearing.!'®

Panel A of Figure 5 shows how average pollution varies over the hours of the day, by
whether or not the respondent owned a Jikokoa as of the 2022-2023 survey. The levels
and diurnal patterns of PM2.5 and PM1.0 follow the air pollution patterns documented by
Pope et al. (2018) in urban Kenya. Average PM2.5 concentrations are highest in hours when
participants self-report cooking (particularly with biomass stoves), and lowest in the hours
when sleeping (Table B3). Emissions in the 60 to 30 minutes prior to the emissions peak
is approximately similar across stoves, but the return to baseline levels takes significantly
longer for dirtier biomass stoves than it does for cleaner stoves (Figure A9). We do not
observe any meaningful seasonal heterogeneity in air pollution over our sample period.

To better understand the distribution of pollution we compute average exposure during
each 10-minute window for each respondent in our data. Panel B of Figure 5 shows the

cumulative distributions of respondents’ 50th and 99th percentile 10-minute averages. Me-

8 Enumerators were attentive to this: for example, they raised concerns about a lack of continuous back-
pack wearing as respondents would take off the backpack for example while sleeping it (placing it next to
their beds) or while working statically (placing it on a table), which we agreed was acceptable as long as the
backpack was within one meter of the respondent. That enumerators were attentive enough to identify this
issue suggests they likely would have noticed any more severe widespread non-compliance.
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dian 10-minute average is below 50 ug/m? for 89% of respondents, but the 99th percentile
exceeds 100 pg/m? for half of respondents, and exceeds 200 pg/m? for 23% of respondents.
This provides the first evidence that within-day variation is statistically and economically

significant.

3.4 Measuring physical health

We present a simple conceptual framework to elucidate how pollution exposure may affect
various health measurements. Define S; to be an individual’s health stock that drives long
term outcomes such as chronic health and longevity (Grossman, 1972). Health stock is
primarily an auto-regressive process affected by general aging as well as environmental shocks
E; (such as pollution):

Ser1 = f (St Ey)

Due to the complexity of human biology, it is difficult to know the correct functional form for
f. While evidence is clear that acute exposure to pollution causes contemporaneous negative
health effects, it is not clear from the literature how quickly or if the body completely fully
recovers (Behndig et al., 2006; Tong et al., 2014; Main et al., 2020; Swiston et al., 2008;
Greven et al., 2012; Salvi et al., 1999; Deary and Griffiths, 2021; Ghio, Kim, and Devlin,
2000; Xu et al., 2013; Singh, Nagar, and Arora, 2023). Given the ambiguity in the medical
and biological literatures, we remain agnostic about this functional form.

Health stock and its evolution are unobservable to the researcher. Instead, we record
health measurements p; at time ¢ which are a function of the individual’s health stock at

time t, their environmental exposure at time ¢, and error ¢;.

/'Lt — Q(St; Et7 Et)

The functional form of g varies by outcome. For example, hospitalization is only detected
for extremes of S; or E;, whereas more continuous measures such as blood pressure could
respond even to modest changes in stress and diet. Different measurements can also be more
or less error prone: for example, asking individuals to recall their cough frequency over the
past six months is more noisy than over the last week.

Different measurements can be more or less strongly affected by health stock relative to
environmental exposure. For example, someone with high health stock could still experience
severe symptoms after a transient spike in pollution exposure. We think of clinical health
outcomes—such as blood pressure, blood oxygen, or child height and weight—as those

that tend to be affected more by the health stock than by the individual’s environmental
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shock in that period, such that:
oue_ O
0S; = O0FE;

We conceptualize acute health outcomes—such as cough, runny nose, sore eyes—as the
converse: measurements of the individual’s health which tend to be more strongly affected
by that day’s environmental shock than by health stock. We expect transient air pollution
spikes to have lower impacts on measurements which are heavily stock dependent and those
that have a large error component.

The sections below describe these two sets of health outcomes in turn. To control for
diurnal patterns in some health outcomes, health regressions control for the hour of day
during which respondents were surveyed. The survey also asks about perceptions of health

impacts, and frequency and financial costs of hospital visits.

Clinical health outcomes The medical literature documents pathophysiologic mecha-
nisms linking particulate matter with cardiac and pulmonary disease (Seaton et al., 1995;
Pope III, 2000). Enumerators record systolic and diastolic blood pressures using a sphyg-
momanometer, following procedures set by the Centers for Disease Control and Prevention
NHANES (2019).' The analysis uses direct measures of systolic and diastolic blood pres-
sure as well as indicators for having hypotension (low blood pressure, defined as <90/60
mmHg), stage 1 hypertension (130-139/80-89 mmHg), and stage 2 hypertension (> 140,/90
mmHg), as defined by the American Heart Association and the American College of Car-
diology (Goetsch et al., 2021). Enumerators use pulse oximeters (blood oxygen saturation
monitors) to record haemoglobin oxygen saturation.?

The enumerators also ask 10 yes/no questions about whether a medical professional had
diagnosed the respondent with various medical diagnoses (including pneumonia, asthma,
or other lung disease), of which we only use diagnoses that were made in the past three
years (since the original experiment) in the analysis. 17% of respondents report having
been diagnosed with pneumonia by a doctor at least once in their lives, including 12% who
report having been diagnosed in the past three years. Table 1 presents additional summary
statistics on health outcomes. To correct for multiple hypothesis testing, we combine these
measures into a standardized health diagnoses index.

Enumerators also measure height, weight, and arm circumference for children (as indica-

19Respondents are asked to sit still, upright, and not engage in affecting behaviors (cooking, smoking, etc.)
in the 30 minutes prior to the blood pressure readings. In line with guidelines, blood pressure is recorded
three times and the analysis uses the average of the three readings.

20While we considered collecting spirometry or peak expiratory flow data, medical consultants in Kenya
and the U.S. suggested that these run the risk of generating noisy and unusable data. We therefore chose to
focus on improving the quality of the personal exposure, blood pressure, and blood oxygen measurements.
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tors for physical child development) and for adults (as controls).

Acute health outcomes Following the methodology from the public health literature (see
for example Tielsch et al., 2016; Smith-Sivertsen et al., 2009; Checkley, Thompson, Hossen,
et al., 2024 and others), the survey asks a large set of self-reported health questions. This
includes 29 yes/no questions asking if the respondent experienced specific symptoms in the
past 4 weeks (including fever, persistent cough, stomach pain, or rapid weight loss). To cor-
rect for multiple hypothesis testing, we combine these measures into two standardized health
symptoms indices, one for respiratory symptoms and one for non-respiratory symptoms.
The respondent is asked similar questions about the health of any children under 10 who
live in the home, including questions about overall health and basic health symptoms, which
we then combine into a standardized child physical health index. The survey also asks about
a set of health symptoms that permit a presumed pneumonia diagnoses, school attendance,

and medical diagnoses.

3.5 Measuring cognition

To assess basic adult and child cognitive functions, we use three instruments. First, we use
the Reverse Corsi Block task to measure working memory (Brunetti, Del Gatto, and Delogu,
2014). Second, we use Hearts and Flowers to measure response inhibition (Davidson et al.,
2006). Third, we use the d2 task for sustained attention (Brickenkamp and Zillmer, 1998;
Bates and Lemay Jr., 2004). Appendix D provides detail on these assessments. The analysis

uses a standardized adult cognitive ability index that combines these three outcomes.

4 Causal impacts

To estimate the causal effect of improved stove adoption on pollution spikes and health,
we use an instrumental variables (IV) approach where we use the randomly assigned stove
price, the randomly assigned credit treatment status, and their interaction as instruments for
stove ownership. These treatments had a statistically and economically large effect on stove
adoption in Berkouwer and Dean (2022a).?! Since both are randomly assigned, this regression
identifies the causal effect of stove adoption on the outcomes of interest. Regressions include

socioeconomic controls and fixed effects as indicated.??

2I'We omit a third random treatment, attention to energy savings, as it had no impact on adoption.

2280cioeconomic controls used in each regression are the respondent’s attention treatment status (a treat-
ment designed to increase attention to energy savings), age, gender, savings in 2019, income in 2019, number
of residents in the household in 2019, number of children in the household in 2019, prevalence of a cough
or breathlessness at night in 2019, hours of work/homework missed due to poor health, education level
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The ‘stove adoption’” dummy could represent either initial adoption in 2019, or ownership
status as of the 2022-2023 endline survey. Using initial adoption represents the longer-
term effects of adoption, factoring in potential breakage or other subsequent changes in
stove ownership, but underestimates contemporaneous effects as some treated individuals
are no longer benefiting from the treatment. Long-term adoption status better estimates
contemporaneous differences, but could result in an overestimated IV coefficient if changes
experienced by respondents who initially adopted the stove but no longer own one at endline
are attributed to the (smaller) treatment group. We present both estimates where relevant

but use ownership as of the long-term follow-up in most regressions.

4.1 Impacts of subsidies and credit on stove ownership and usage

Panel A of Table 2 shows the causal impact of 2019 Jikokoa adoption on long-term ownership
of various stove types. 90% of respondents who did not adopt a Jikokoa during the main
visit still do not own one during the long term endline, and 83% of respondents who adopted
a Jikokoa initially still own one three years later. This persistence generates a strong first
stage, with weak IV F-statistics between 20 and 50 depending on the specification (Table B4).

The median household owns two stove types, indicating some degree of fuel stacking.
Liquefied petroleum gas (LPG) usage has risen sharply in recent years, particularly in Nairobi
where 60% of respondents report owning an LPG stove (compared with 40% of those who
live elsewhere), potentially as a result of a government LPG subsidy program (IEA, 2022).
This paper’s estimates of pollution and health impacts should be interpreted as the aggregate
causal effect of improved cookstove adoption, allowing for any continued use of existing stove
(rather than an estimate of a strict switch from an existing stove to an improved stove).

Jikokoa adoption does not appear to meaningfully affect adoption of other modern cook-
ing technologies such as LPG, bio-ethanol, or electric stove ownership, though we cannot
rule out modest increases. We thus find limited evidence of the ‘energy ladder’” mechanism
where improved stove adoption can act as a stepping stone (Hanna and Oliva, 2015), nor
of the converse, that adoption of an intermediary technology can slow adoption of an even
more improved technology (Armitage, 2022; Hornbeck et al., 2024).

Improved stove adoption does not appear to impact time spent cooking per day, nor the
propensity to cook indoors (Table B2). It slightly increases the propensity to cook Githeri

(a common maize and beans dish) but has no other impacts on foods cooked (Table B6).

completed in 2019, charcoal expenditures in 2019, level of risk aversion in 2019, status of credit constraint
in 2019, living situation as rural or urban, age as decade binary variables (designed to capture non-linear
impacts of age), as well as field officer fixed effects. Panel data fixed effects include week FE, device FE, and
the interaction of and hour-of-day by day-of-week by neighborhood FE.
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Table 2: IV estimates of the causal impact of cookstove adoption on socio-economic outcomes

Treatment Treatment

Effect Effect
Control (2022 (2019
Mean Ownership) Ownership) N
Q@ 3)
Panel A
Owns other wood or charcoal stove 0.88 -0.54* 702
[0.33] (0.05)
Owns Jikokoa 0.10 0.747 702
[0.31] (0.04)
Owns LPG stove 0.57 0.05 702
[0.50] (0.06)
Owns bio-ethanol stove 0.15 0.01 702
[0.36] (0.04)
Owns electric stove 0.00 0.02* 702
[0.06] (0.01)
Panel B
Charcoal expenditures past 7 days 3.65 -1.50%** -1.12%* 702
(USD) [2.93] (0.47) (0.35)
Charcoal expenditures past 7 days (urban)  3.79 -1.65%** -1.20"* 649
[2.94]  (0.52) (0.37)
Charcoal expenditures past 7 days (rural)  1.82 1.22 1.16 53
[2.00]  (1.00) (0.81)
Earnings past 2 weeks (USD) 32.20 4.73 3.45 563
[35.31] (7.83) (5.38)
Total savings (USD) 57.70 -8.63 -7.07 701
[94.87]  (19.88) (14.67)
Has formal bank account (=1) 0.12 0.11 0.08 702
[0.33] (0.07) (0.05)
Minutes cooking per day 133.79 3.49 2.60 702
[57.29] (8.32) (6.15)
People in network who adopted Jikokoa 0.75 1.13** 0.84** 702
[2.03] (0.40) (0.29)

Panel A presents the causal impact of 2019 Jikokoa adoption on 2022-2023 cookstove ownership. Panel
B presents the causal impact of 2022 Jikokoa ownership and 2019 Jikokoa adoption (Columns 1 and 2) on
outcomes from the 2022-2023 endline surveys. Each row is an IV regression that uses the randomly assigned
price, credit treatment status, and their interaction as instruments for the endogenous variables. Regressions
include socioeconomic controls. Table B5 presents additional socio-economic outcomes.

4.2 Impacts of stove ownership on air pollution

We use the same IV approach to estimate the causal impact of stove adoption on air pollution
for each hour of the day. Figure 6 shows that the impact varies significantly across hours in

the day. Improved stove ownership reduces air pollution between 5-8am and 7-10pm—when
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respondents report to be cooking—but not during other hours of the day.??

Figure 6: Impact of Jikokoa ownership on average hourly PM2.5 (in pug/m?)
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Coefficients from a single instrumental variables regression that uses subsidy, credit treatment status,
their interaction, and their interaction with hour of day dummies as instruments to estimate the causal
impact of Jikokoa ownership on PM2.5 exposure (with socioeconomic controls and panel fixed effects). The
gray bars report the fraction of respondents who report cooking during any given hour in the time use survey.
Joint F-tests that the coefficients on 5am, 6am, and 7am all equal 0 or that the coefficients on 7pm, 8pm,
and 9pm all equal 0 cannot be rejected. Table 3 pools the data to improve statistical power. Figure A10
presents the OLS version.

To improve statistical power, Table 3 aggregates PM2.5 exposure data for each individual.
We use the same IV approach to estimate the causal impact of stove adoption on four
key moments of PM2.5 pollution exposure: median exposure (Column 1), mean exposure
(Column 2), the maximum hourly average (Column 3), and the 99th percentile of 10-minute
averages (Column 4). Panel A includes all hours during which the respondent was wearing
the device, while Panel B limits the data to the hours during which the respondent self-
reported cooking in the time use survey (for robustness, Table B7 presents results on all
non-cooking hours and on cooking hours defined uniformly as 6-8am and 6-9pm).

Two key patterns emerge. First, improved stove adoption causes a large and statistically
significant reduction of 51.3 pg/m? in the 99th percentile of 10-minute means while cooking
(Column 4 of Panel B), which corresponds to around a 41% reduction in the marginal

emissions increase from cooking (over median non-cooking exposure) when compared with

23Pollution impacts occur slightly after cooking, possibly because smoke can persist for some time after
the user stops cooking, or because respondents start lighting the stove some time before actually cooking
and do not consider this cooking in the time use survey.
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Table 3: IV estimates of the causal impact of cookstove adoption on PM2.5 exposure

Panel A) All hours

(1) (2) (3) (4)
Median Mean Max Hour 99th

Own Jikokoa 0.2 -0.8 -16.4 -8.0
(1.7) (3.4) (19.0) (23.0)
Control Mean 25.2 37.8 153.3 200.2
Weak IV F-Statistic 53 53 53 53
Observations 651 652 651 651

Panel B) When self-reporting cooking

(1) (2) 3) @

Median Mean Max Hour 99th
Own Jikokoa -10.8** -16.8%** -30.7* -51.3**
(5.2) (6.4) (15.4) (22.6)
Control Mean 35.9 49.7 92.6 150.3
Weak IV F-Statistic 48 48 48 48
Observations 598 599 595 598

Each column is an IV regression where the randomly assigned price, credit treatment status, and their
interaction are used as instruments for endline Jikokoa ownership. Column (1) uses median exposure, (2)
uses mean exposure, (3) uses maximum 1-hour average exposure, and (4) uses 99th percentile of 10-min
average exposure. Of the 702 respondents surveyed, 651 consented to having a PA-II device (Section 4.7
discusses attrition); some of them never self-reported cooking. Regressions include socioeconomic controls
and a fixed effect for the specific PA-II device that respondent used. Table B8 presents the same for carbon
monoxide. Table B7 presents the same for when self-reporting not cooking and for the hours between 6-8am
and 6-9pm. Table B9 presents all outcomes in logs.

the control group.?*?® This mirrors the 41% reduction in charcoal expenditures identified in
Table 2: PM2.5 emissions from cooking appear to decrease proportionally to charcoal usage.
Columns 3 and 4 of Panel A show that there is a smaller reduction in max hourly and 99th
percentile of 10-minute pollution over all hours of the day, which includes spikes generated
for example by traffic. While cooking with a traditional charcoal jiko might generate larger
spikes than commuting, this may not be the case for cooking with a Jikokoa, such that
for many adopters the largest spikes no longer occur during cooking. These patterns are
economically and statistically similar when the data are analyzed in logs (Table B9).

Second, despite large emissions reductions during cooking, there is only a 2% reduction

24To estimate the marginal emissions from cooking we first estimate typical ambient exposure as the average
across control participants of their median 10-minute windows; this is 25.2 ug/m3. We then estimate typical
cooking exposure as the average across control participants of their 99th percentile 10-minute windows during
hours while cooking; this is 150.3 ug/m?. Differencing these two estimates gives an estimated marginal effect
of cooking of 125.1 ug/m?3.

25These results hold regardless of how we define these short-term increases: versions studying the 90th
and 95th percentiles of 10-minute means, as well as the 90th, 95th, and 99th percentiles of the raw pollution
distribution, show virtually identical impacts.
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in aggregate average exposure, and this reduction is not statistically significantly different
from zero (Column 2 of Panel A in Table 3). This can be rationalized with a simple equation

describing an individual’s average pollution exposure:
PM:PMcpc+PMtpt+PMa (1_pc_pt>

Where P M., is average pollution while cooking, PM; is average pollution while traveling, and
PM, is average ambient pollution; p. is the proportion of time spent cooking and p; is the
proportion of time spent traveling. Pope et al. (2018) document average roadside PM2.5 lev-
els in Nairobi of PM; = 37ug/m? and average urban background levels of PM, = 25ug/m3.
Our measurements indicate average pollution levels while cooking with a traditional stove
is PM, = 49.7ug/m? (Panel B, Column 2 of Table 3). The time use data we collected (Ta-
ble B3) indicate that respondents cook for on average 9% of the time (2 hours per day) and
travel (primarily walking or riding the bus) on average 10% of the time (2.4 hours per day).
Under these conditions, a 50% reduction in emissions while cooking would reduce average
daily emissions by 8%, which is within the confidence intervals of the estimates in (Table 3).
Even a 100% reduction in cooking emissions (for example from the adoption of an electric
stove) would cause only a 16% reduction in average PM2.5 exposure. In this urban context,
the reduction in cooking-related pollution causes only a small and statistically undetectable
reduction in total pollution exposure.

We can apply this calculation to rural areas as well, where ambient air pollution is on
average 9 ug/m3 (Pope et al., 2018). Conservatively supposing that participants cook for
twice as long in rural areas as in urban areas, a 50% reduction in pollution during cooking
would generate a 25% reduction in aggregate exposure.?® While this is a sizable reduction, if
the dose-response function is concave (as in for example Goodkind, Coggins, and Marshall,
2014; Pope III et al., 2015), then the impact of improved cooking technologies may be
undermined by the presence of ambient air pollution. This points to the importance of
measuring ambient air pollution, even for studies only targeting reductions in air pollution
caused by cooking.

It is worth noting that many people likely move away from their stove or increase ven-
tilation at least sometimes while cooking, which reduces average cooking concentrations
measured by personal exposure devices. While realized pollution exposure is the relevant
object for policy and health research, the reduction in pollution caused by improved stove
adoption might have been larger if measured using stationary stove monitors. The reductions

measured by personal monitors could thus be considered a lower bound on total emissions

26Unfortunately we are unable to use our own study data for this. Due to logistical surveying constraints
in rural areas, most study participants residing in rural areas did not receive air pollution monitoring devices.
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reductions.

Cooking hours tend to coincide with traffic patterns: both have a morning and an evening
spike. Using hourly data on self-reported cooking activity and pollution allows us to include
hour-of-day fixed effects in the regressions. However, this significantly reduces identifying
variation since there is a strong correlation between hour of day and propensity to be cooking.
We therefore estimate this regression using both IV and OLS specifications (Table B10).
While the IV estimates are noisier than the OLS estimates, the results present a similar
story: improved stove adoption does not affect PM during non-cooking hours but reduces
average PM2.5 significantly during self-reported cooking hours.

We see no impacts on CO (Table B8), in line with independent laboratory tests scoring
the Jikokoa Tier 3 for PM2.5 but Tier 1 for CO (CREEC, 2022). A stove’s CO output
generally depends on its oxygenation rate: higher oxygen inflow increases CO, production
and reduces CO production while cooking. Per the company’s engineers, the lack of reduction
in CO output results from a desire to increase the durability of the stove by limiting peak
cooking temperatures to 700°C. While this improves durability, it limits oxygenation.

Finally, we estimate the impacts of spending a specific amount of time above a certain
air pollution threshold, for different thresholds, mirroring common regulatory proposals (Ta~
ble B11). This dramatically reduces the power of the estimation, as only movements across
the threshold will generate a treatment effect. When trying to answer regulatory or health
questions, looking at averages or other moments in the distribution can often generate more

precise statistical results than relying on data on thresholds.

4.3 Impacts of stove ownership on health

How does the 41% reduction in cooking emissions spikes affect health? Table 4 estimates the
impact of stove adoption on health outcomes, using the IV approach discussed above and
controlling flexibly for age and linearly for other baseline socioeconomic outcomes. Column
(2) uses 2022 Jikokoa ownership as the endogenous variable while Column (3) uses 2019
Jikokoa adoption. The first outcome is an index of clinical health measurements. The next
six outcomes are indices and counts of self-reported health outcomes. Following our pre-
analysis plan (Berkouwer and Dean, 2022b) we separate self-reported health symptoms into
those related to the respiratory system and those not.

The results indicate a 0.24 standard deviation reduction in a summary index of self-
reported symptoms directly related to pollution, such as sore throat, headache, and cough
(Table B13 presents more detailed results on pollution-related symptoms) and 0.48 fewer

respiratory symptoms reported. In Section 4.6, we consider the potential role of experimenter
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Table 4: IV estimates of the causal impact of cookstove adoption on primary health outcomes

Treatment Treatment
Effect Effect
Control (2022 (2019

Mean Ownership) ownership) N

(1) (2) (3)

Physiological health index (blood oxygen and -0.00 0.02 0.02 696
blood pressure) [1.00] (0.17) (0.13)
Number of non-respiratory health symptoms  1.09 -0.24 -0.18 702
[1.54] (0.25) (0.19)
Non-respiratory health symptom index -0.00 -0.03 -0.03 702
[1.00] (0.19) (0.14)
Number of respiratory health symptoms 1.70 -0.48** -0.36™ 702
[1.76] (0.23) (0.17)
Respiratory health symptom index -0.00 -0.24% -0.18* 702
[1.00] (0.13) (0.10)
Health diagnoses index 0.00 0.13 0.10 702
[1.00] (0.16) (0.12)
Number of health diagnoses 0.30 0.13 0.10 702
[0.58] (0.09) (0.07)
Cognitive index 0.00 -0.00 -0.01 278
[1.00] (0.14) (0.12)
Healthcare utilization index (spending and 0.00 0.08 0.05 702
visits) [1.00] (0.14) (0.11)

Each row is an instrumental regression wherein endline modern stove use is instrumented for with
randomly assigned price, credit treatment status, and their interaction. Regressions include socioeconomic
controls and control for hour of day of the second visit, where blood pressure and blood oxygen were recorded.
Table B12, Table B13, Table B14, Table B15, and Table B16 present detailed results on the components
of the diagnoses, respiratory symptoms, non-respiratory symptoms, cognitive, and healthcare utilization
indices. Outcomes for children are presented in Table B17.

demand in creating this effect and conclude the evidence suggests it is likely minimal. This
reduction is sizeable, though smaller than the 0.56 standard deviation reduction in self-
reported symptoms estimated using data from the one-year follow-up survey and relatively
imprecisely estimated (Berkouwer and Dean, 2022a).

However, we identify no long-term health improvements in clinical outcomes such as
blood oxygen, blood pressure, and self-reports about any diagnoses made by a medical
professional during a hospital visit (Table B14 and Table B12 present more detailed results
on non-pollution related symptoms and medical diagnoses, respectively).

Specifically, we are powered to reject that owning a stove at endline decreased our di-
agnoses index by more than 0.18 SD and that it increased our physiological health index
(composed of blood pressure and pulse oximetry) by more than 0.35 SD. Table 5 presents

the impacts on the individual components of the physiology index. To interpret these results
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Table 5: IV estimates of the causal impact of cookstove adoption on physiological outcomes

Control Treatment
Mean Effect N  g-value

Average systolic blood pressure 122.16 0.49 696  0.88
[18.97] (3.30)

Average diastolic blood pressure 81.32 0.58 696  0.88
[11.73] (2.15)

Hypertension: Stage 1 or higher (>130/80)  0.51 0.02 696  0.88
[0.50] (0.09)

Hypertension: Stage 2 or higher (>140/90)  0.27 -0.02 696  0.88
[0.44] (0.08)

Blood oxygen 96.61 0.31 696  0.88
[2.53] (0.37)

Low blood oxygen: 95 or lower 0.21 -0.08 696  0.88
[0.41] (0.06)

Each row is an IV regression where randomly assigned price, credit treatment status, and their interaction
are used as instruments for endline Jikokoa ownership. Regressions include socioeconomic controls.

clinically, it’s useful to focus on the systolic component where we are powered to reject a de-
crease of 5.97 mm Hg with 95% confidence. Ettehad et al. (2016) conducted a meta-analysis
of 123 randomized controlled trials examining the health impacts of reducing systolic blood
pressure. They find a 10 mm Hg reduction is associated with a 20% reduction in the risk of a
major cardiovascular event off a base of 11%. Applying this estimate to our results suggests
we are powered to reject a change large enough to reduce major cardiovascular events by
12%. As another point of comparison, smoking a cigarette causes an acute increase in sys-
tolic blood pressure of 20 mm Hg, however the impact of smoking on weight loss complicates
inference about the impact of smoking on long-term blood pressure through the respiratory
channel per se (Cohen and Townsend, 2009).

We find no effect on the number of hospital visits, hospital-related expenditures, or any of
the cognition outcomes (Table B15).%” Finally, we see no impacts on children’s outcomes. We
cannot detect a statistically significant impact on a range of child health outcomes, including
child anthropometrics (raw and WHO growth standard-adjusted z-scores of weight, height,
and arm circumference), a range of self- or parent-reported symptoms, and two types of
attempted pneumonia diagnoses (Table B17), neither among children under 10 nor when
restricting the sample to children under 6, who are more likely to stay at home during the
day.

Participants’ baseline beliefs about the stove’s health benefits on average lines up well

2"Due to a technical issue with the tablets the sample size for some of the cognition outcomes is smaller
than in other outcome tables. Since this was a technical issue, and since the order of follow-up surveys was
randomized, it is unlikely that this biased the results in any meaningful way.
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with these findings. At baseline, 37% of respondents believed that adoption of the improved
stove would have no impact on their health, 34% believed it would have a small or medium
impact, and only 29% believed it would have a large or very large impact. Participants may
have already sensed that reductions in cooking-related pollution will have smaller health
impacts in the presence of the high levels of ambient pollution they experience every day
than has been previously argued for by policy makers. Furthermore, respondents who believe
that the stove will have larger health impacts on average do not have higher WTP, unlike
beliefs about financial savings which are strongly correlated with WTP. Table 4 of Berkouwer
and Dean (2022a) reports health and savings beliefs in different units. Standardizing both
outcomes yields the following results: increasing health beliefs by 1 SD decreases WTP by
$0.01 (p=0.988) while increasing savings beliefs by 1 SD increases WTP by $0.79 (p=0.036).
This suggests that even those that reported believing the stove would have large or very
large impacts, do not feel that the health improvements would be sufficiently meaningful to

pay for.

4.4 Physiological mechanisms: Relating pollution and health

As discussed in Section 1, air pollution spikes may have very different health impacts than
the mean daily levels that were investigated in much of the literature studying ambient
air pollution. The significant reduction in intense, short-term spikes likely contributed to
the reduction of self-reported—and largely transient rather than chronic—respiratory health
symptoms. At the same time, the lack of reduction in aggregate average pollution exposure
may explain the lack of impacts on chronic or quantitative health outcomes, despite 3.5 years
of sustained use with reduced spikes in air pollution.

These results are consistent with several models of physiological pathways. One possibil-
ity is that short-term spikes drive short-term symptoms, whereas clinical health impacts are
driven primarily by long-term ambient exposures. In other words, while reductions in spikes
in exposure can generate important short-term health benefits, improvements in long-term
measures of health may require reductions in ambient air pollution exposure. If this is the
case, our results also have distributional implications regarding who is exposed to pollution:
in addition to being less able to afford improved private technologies, respondents with lower
wealth also on average face higher levels of ambient air pollution (Table B19). Another pos-
sibility is that the reduction in acute symptoms may be driven by psychological effects. We
discuss this possibility in more detail in Section 4.6.

Table 6 shows correlations between health and three key moments of pollution: average

pollution exposure (in 100 pg/m?), pollution exposure spikes (defined as the highest hourly
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Table 6: Correlations with different moments of the PM2.5 distribution

Mean  Median Max Hourly  Hours
Pollution Pollution Pollution Above
Mean in SD in SD in SD 100pg/m* N

(1) (2) (3) (4) G) (6

Hypertension (>130/80) 0.51 0.01 -0.02 0.00 0.00 645
[0.50]  (0.02) (0.02) (0.02) (0.01)

Blood oxygen 96.72 0.12 0.12 -0.03 0.03 645
[2.43]  (0.10) (0.11) (0.10) (0.06)

Health symptoms index (z-score) -0.09 0.01 -0.01 0.07** 0.01 651
[0.92]  (0.04) (0.04) (0.04) (0.02)

Number of health symptoms 2.52 0.02 -0.00 0.23* 0.02 651
[2.66] (0.11) (0.11) (0.10) (0.06)

Health diagnoses index -0.04  -0.04 -0.05 0.00 -0.03 651
[0.89]  (0.04) (0.04) (0.04) (0.02)

Number of health diagnoses 0.29 -0.03 -0.02 -0.00 -0.02 651
[0.56]  (0.02) (0.03) (0.02) (0.01)

Hospital visits in past 30 days 0.30 -0.01 -0.01 0.01 -0.00 651
[0.55]  (0.02) (0.02) (0.02) (0.01)

Hospital visit expenditures (USD) 2.82 0.66 0.40 0.62 0.26 651
[10.14] (0.44) (0.45) (0.42) (0.24)

Each row and column cell in Columns (2)—(5) is a separate OLS regression. All regressions include
socioeconomic controls, air pollution device FE, month of survey, and baseline WTP. Table B20 shows
additional variables. Table B13, Table B14, and Table B12 present detailed results on symptoms and
diagnoses.

average recorded, in 100 pug/m?), and the duration of high pollution (above in 100 pg/m?)
exposure (Table B20 and Table B21 show more detailed outcomes, and specifications that
control for average PM2.5 and CO pollution, respectively).?® Hourly pollution spikes are
strongly correlated with self-reported health symptoms, but not with any of the clinical
health outcomes. That mean and median PM2.5 air pollution are not correlated with health
is likely due to an absence in sufficient identifying variation in ambient exposure, rather than
an absence of a relationship between aggregate pollution exposure and health.

We do not find evidence of heterogeneity in treatment impacts along the lines of baseline
health, baseline beliefs about future health impacts, age, WTP, baseline charcoal expendi-
tures, or endline LPG ownership (Table B22). Ambient pollution is a potentially important
source of heterogeneity, as some previous research has found air pollution improvements to
be non-linear—either concave or convex—in average pollution. We test for heterogeneity

in the primary treatment effect on health by whether the respondent has above or below

28We present correlations here rather than instrumenting for pollution levels because we do not have
enough strong instruments to separately identify changes in peaks and the ambient level of pollution.
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median ambient air pollution. To avoid bias due to adoption endogeneity and noise in the
time use data, we define a respondent’s ambient pollution as average pollution among the
five respondents residing nearest that respondent. We then test whether the health impacts
differ by whether respondents’ ambient exposure is above vs the median. We find no dif-
ference of heterogeneity along this dimension, at least over the range of pollution levels we
observe (Table B23).

Since ambient pollution levels are generally lower in rural areas than in urban areas,
study participants residing in rural areas may experience larger proportional pollution im-
provements. To examine whether health impacts are different for study participants residing
in rural areas, we estimate the causal impact of adoption on health outcomes just among this
sample. We do not find evidence of health improvements among this sub-sample—in fact,
most point estimates point in the opposite direction. We refrain from over-interpreting this
result because the rural sample is very small (n = 53) and because moving is an endogenous
choice that may bias the estimation (Table B24).

4.5 Impacts of stove ownership on socio-economic outcomes

Panel B of Table 2 presents the impact of stove adoption on various socioeconomic out-
comes (Table B5 presents a more detailed version). Improved cookstove ownership causes
a $1.50 reduction in average weekly charcoal expenditures, or a 41% reduction relative to
the control group. These savings correspond to 9.3% of the control group’s average income:
in other words, adoption saves more than one month of income per year. These numbers
correspond closely to the estimates from Berkouwer and Dean (2022a). The USD conversion
(approximately $86 per year) is slightly lower due to Kenya’s high inflation in recent years.

Importantly, the large financial savings could be a mechanism through which stove adop-
tion improves health. For example, adopters could use the savings to improve the quality or
quantity of the food they consume, purchase medical defense technologies such as insecticide-
treated bednets or vaccinations, or afford medications and doctors’ visits. Conversely, in-
creases in hospital visits could cause us to underestimate the impact of pollution on health
if they change the conditional likelihood of being diagnosed or informed of a disease by a
medical professional. Still, several factors suggest the income effect is likely to be small in
this context, with the health impacts more likely to be driven by the reduction in pollution
spikes per se.

First, we see no change in the propensity of the respondent to purchase protein-rich
foods such as meat, fish, or egg (Table B6). The propensity to cook Githeri increases, but

Githeri contains only beans and maize, which more than 90% of participants were already
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consuming at baseline. Second, we see no change in healthcare utilization, which includes
hospital visits, hospital expenditures, and non-hospital health expenditures (Table B16).

Third, we only find a significant reduction in self-reported respiratory symptoms, while
we see no significant reduction either the non-respiratory symptom index or the number of
non-respiratory symptoms. However, there are two important caveats to this result. First
we are only powered to reject reductions of greater than 0.4 SD and 0.73 symptoms for the
non-respiratory index and number of non-respiratory symptoms respectively. Second, we
find a decrease in malaria which is significant at the 10% level before multiple hypothesis
correction. We interpret this cautiously given that we see pre-correction significant increases
in other non-respiratory health outcomes—such as worms—and the result on malaria is no
longer significant after multiple hypothesis correction (g-value=0.19). If the reduction in
malaria rates is real, this likely has important quality-of-life benefits, however it is unlikely
to explain the reduction in respiratory symptoms that we see.

This is consistent with the findings of Haushofer and Shapiro (2016) who study uncondi-
tional cash transfers of similar or larger amounts in Kenya ($404 or $1525). They estimate
a reduction in the health index of 0.03 SD and can reject any increase larger than 0.09 SD.
Taken together, this evidence suggests that income effects are not likely to be behind the
self-reported health improvements that we see.

Adoption increases the propensity of individuals in an adopter’s network to adopt the
stove. Specifically, it roughly doubles the number of Jikokoa stoves owned by members in a
respondent’s network such as friends, family, and in particular neighbors. We see no impacts
on savings or formal banking access, suggesting the financial savings may have been spent
on consumption. We see no impacts on hours worked or earnings. Finally, we see no impact

on time spent on various activities such as sleeping, working, eating, or walking (Table B25).

4.6 Psychological effects and experimenter demand

The difference in results between the self-reported respiratory symptoms and the clinical
health outcomes could be caused by bias from self-reports. Existing research in the medi-
cal literature has documented some degree of discrepancy between patient self-reports and
medical records.? In this section we explore the extent to which four versions of this issue
may drive our results.

A critical concern when using self-reported data is that self-reports may be driven by
experimenter demand where respondents provide answers that they believe will please the
experimenter (Orne, 1962; Quidt, Haushofer, and Roth, 2018). Subsidies in the study ranged

29Gee for example Skinner et al. (2005), Katz et al. (1996), Akker et al. (2014), and Fowles, Fowler, and
Craft (1998). Tisnado et al. (2006) explore how concordance varies by patient characteristics.
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from 25%-90%, and participants who received a heavily subsidized cookstove might be more
inclined to report better health than those who did not. While we cannot rule out some
amount of experimenter demand, several factors weigh against this fully explaining the ef-
fects. First, we test whether those with higher subsidies are more likely to report positive
health even after controlling for stove adoption. If respondents with a lower price (higher
subsidy) were more likely to self-report better health, price would correlate directly with self-
reported symptoms rather than purely through the adoption channel (‘owns Jikokoa’). We
do not find evidence of this (Table B26). Second, there are correlations between self-reported
non-respiratory symptoms and blood pressure as well as between self-reported health diag-
noses and blood pressure, suggesting these self-reports carry a meaningful signal (Table B18).
Third, the relationship between self-reported health symptoms and objectively measured
pollution spikes provides credence to the self-reports (Table 6). Finally, self-reported health
improvements arise primarily through respiratory rather than non-respiratory symptoms:
participants would thus have to be sophisticated about our motivations as experimenters to
selectively report improvements in some health outcomes but not others.

One other way to reconcile the impacts on self-reported symptoms directly related to
pollution with the lack of impact on more objective outcomes is that the self-reports are
driven by the “peak-end” effect. A classic psychology finding is that when evaluating expe-
riences, individuals attend primarily to the peak intensity of the experience and the end of
the experience (Fredrickson and Kahneman, 1993; Kahneman et al., 1993; Redelmeier and
Kahneman, 1996). In our context, this means that when asking someone about their symp-
toms, they may pay disproportionate attention to the symptoms experienced during smoke
exposure spikes. Because the intensity of the spikes is reduced by the Jikokoa, these salient
experiences may be reduced even without an effect on more enduring measures of health.
It is important to note that this does not mean the self reports contain no signal of health
experiences, but that they may be driven by peak experiences which may not translate into
non-transitory health impacts.

Another possibility is the decline in reported acute symptoms, such as cough, may be
due to memory distortions induced by the reduction in smoke. Significant literature in
psychology has highlighted the fallibility of memory, and, in particular, the tendency of
individuals to falsely recall events that did not occur but are associated with events that
did occur (Schacter, Guerin, and Jacques, 2011; Schacter, 1999; Roediger and McDermott,
1995; Braun, Ellis, and Loftus, 2002; Deese, 1959; Bernstein and Loftus, 2009). Thus,
when answering the questions about respiratory symptoms, the respondent’s memory recall
processes may have constructed a reduction in symptoms based on the true reduction in

exposure to smoke.
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A final related possibility is that subjects believe they are experiencing reduced symp-
toms, but that this is driven by placebo effects. While we cannot rule out this possibility
given our measures, three pieces of evidence point against this possibility. First, as noted
above, we find that self-reports are correlated with our objective measures of peak pollu-
tion exposure. Second, Table B22 shows that we find no heterogeneity by baseline beliefs
of the health impacts in the treatment effect on either the number of reported respiratory
health symptoms or the respiratory health symptoms index (point estimates of -0.02 and
-0.00 respectively). If the results are driven by placebo effects, we would likely expect those
who believed they would experience an effect to show larger effects. Finally, as noted above,
the baseline beliefs were uncorrelated with willingness to pay. This suggests that even for
individuals who believed there would be a health impact, they did not feel strongly enough
about the improvement to stake any amount of money on it. We believe that makes it less

likely that the belief would be strong enough to generate a placebo effect.

4.7 Attrition

702 of the 943 respondents (74%) were surveyed successfully during the three-year follow-up
survey.’® Attrition is not correlated with their randomly assigned BDM price, credit treat-
ment assignment, initial Jikokoa stove adoption, or baseline health outcomes (Table B27).
Attrition is slightly higher among respondents with fewer children, fewer household mem-
bers, and younger respondents (such respondents may more easily move around, making
them harder to track).

As a rule we attempted to survey any respondent still residing in Kenya. 164 respondents
could not be contacted by phone. Physical attempts to track individuals were hampered by
the recent demolitions of housing in Nairobi’s settlement areas (The Star, 2023).

The remaining 77 respondents who were contacted but who chose not to complete the
2022-2023 survey made this choice for a variety of reasons, including nonavailability, non-
consent, outmigration, or physical incapacitation (Table B28). Seven study participants had

deceased.

5 Conclusion

Air pollution is a significant contributor to global morbidity and mortality. Extensive re-

search documents a negative causal relationship between daily average air pollution and

3012 of the 955 respondents who had completed the main visit in 2019 had withdrawn from the study
between 2019 and 2022.
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health. Yet, despite active regulatory and policy debate, there is scant evidence about the
impacts of persistent transient spikes in air pollution and whether reducing these spikes can
generate meaningful health improvements. This question is crucial in addressing pollution
from, for example, commuting and cooking, two near universal sources of air pollution. How-
ever, the topic has been difficult to answer because economic activity, human behavior, and
demographic patterns can all increase the wedge between pollution recorded by stationary
monitors (which includes most regulatory monitors) and realized individual-level pollution
exposure (the policy-relevant object for understanding health impacts).

To fill this gap, we conduct a field experiment studying an improved biomass cookstove
in Kenya. Randomized subsidies and access to credit yield a persistent increase in adoption
of a more energy efficient biomass cookstove that persists even more than three years later.
We find that improved stove ownership causes a 41% reduction in air pollution spikes gen-
erated during cooking hours. As a result, respondents experience a 0.24 standard deviation
improvement in self-reported respiratory symptoms.

However, we find a comprehensive lack of impacts on clinical health as measured through a
range of outcomes, including blood pressure, blood oxygen, and diagnoses of chronic diseases
(such as pneumonia), for both adults and children. This may be because of the lack of impacts
on average pollution exposure: we observe no reduction during the remaining 22 hours of
the day, and given the high levels of ambient pollution in this urban context, we see only a
very small (2.1%) and statistically insignificant reduction in average air pollution exposure.

Taken together, these results are consistent with a physiological model where pollution
spikes affect short-term health and daily averages affect clinical, chronic health. Given the
high levels of ambient pollution experienced in many low- and middle-income country cities,
this suggests that the urban poor have only limited ability to improve their health through the
private adoption of improved technologies. Instead, clinical health may require government
intervention addressing the negative pollution externality generating high levels of ambient

pollution.
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